

TEST CERTIFICATE No. DK0199-R76-11.04

KFN-TM / KFB-TM **Instrument type** Test item device Non-automatic Weighing Indicator Issued by **DELTA Danish Electronics, Light & Acoustics** EU - Notified Body No. 0199 In accordance with Paragraph 8.1 of the European Standard on metrological aspects of non-automatic weighing instruments EN 45501:1992. Fractional factor (p_i) 0.5 (refer to 3.5.4 of the standard). Issued to Kern & Sohn GmbH Ziegelei 1 D 72336 Balingen-Frommern **GERMANY** Kern & Sohn GmbH Manufacturer In respect of A family of indicators tested as a module of a weighing instrument. Characteristics Suitable as a non-automatic weighing instrument with the following characteristics: Self indicating with single-interval, multi-interval or multi-range Accuracy class III or IIII Verification scale interval: $e_i = Max_i/n_i$ Maximum number of verification scale intervals: n = 6000 for single-interval $n = 2 \times 3000$ for multi-interval and multi-range, DELTA however limited to 1000 for Class IIII Danish Electronics, Min. input voltage per VSI: $1 \mu V$ Light & Acoustics The essential characteristics are described in the annex. Venlighedsvej 4 **Description and** The A/D device is described and documented in the annex to 2970 Hørsholm documentation this certificate. Denmark Summary of tests involved: See test report no. DANAK-Remarks 1910568, DANAK-1910388 and NMi 709226. Tel. (+45) 72 19 40 00 This test certificate cannot be quoted in an EU type approval certificate without permis-Fax (+45) 72 19 40 01

The annex comprises 7 pages.

sion from the holder of the certificate mentioned above.

Issued on 2011-03-16

Signatory: J. Hovgård

www.delta.dk

VAT No. DK 12275110

1. Name and type of instrument

The indicators KFN-TM / KFB-TM are a family of weighing indicators suitable to be incorporated in non-automatic weighing instruments, class III or class IIII, with single-interval, multi-interval or multi-range.

2. Description of the construction and function

2.1 Construction

The electronic indicator consists of a single circuit board, SMD populated on both sides as the A/D-interface circuits, the microprocessor and the voltage regulation are placed on one side and the LCD display on the other side.

The LCD-display has indication for: Stable, zero, gross, net, tare, and weight unit (kg, g, t), and $5\frac{1}{2}$ digits with a height of 52 mm.

The enclosure is made of stainless steel for the KFN-TM indicator or of ABS plastics for KFB-TM.

The front of the enclosure has an on/off key plus 6 keys for operating the functions of the indicator.

All instrument calibration and metrological setup data are stored in the non-volatile memory.

The indicators are power supplied with 9 - 12 VDC - normally supplied by external 230 VAC to 9 - 12 VDC adapter. An optional internal battery can be factory installed.

As part of the indicators EMC protection ferrites shall be placed as follows:

- Externally around the DC supply cable near its connection to the indicator (min. 1 turn).
- Internal on cable between power plug and main board (4 turns).
- Internal on cable between load cell connector and main board (min. 2 turns).

Software

The software version is displayed during the start-up of the indicator. The tested software version is 1.07.

Sealing

The configuration and calibration data can only be changed if the calibration jumper is installed on the circuit board.

2.2 Function

The devices are a microprocessor based electronic weighing indicators for connection of strain gauge load cells.

List of devices:

- Self test
- Determination and indication of stable equilibrium
- Initial zero-setting $\pm 10\%$ of Max
- Semi-automatic zero-setting $\pm 2\%$ of Max
- Automatic zero-tracking $\pm 2\%$ of Max

- Indication of zero
- Semi-automatic subtractive tare
- Acting upon significant fault
- Weighing unstable samples
- Real time clock (optional)

3. Technical data

3.1 Indicator	
Туре	KFN-TM / KFB-TM
Accuracy class	III or IIII
Weighing range	Single-interval, multi-interval or multi-range
Maximum number of verification scale intervals (n)	6000 for single-interval
	2×3000 for multi-interval and multi-range, however limited to 1000 for Class IIII
Minimum input voltage per VSI	1 μV
Maximum capacity of interval or range (Max _i):	$n_i imes e_i$
Verification scale interval, $e_i =$	Max_i / n_i
Initial zero-setting range:	± 10 % of Max
Maximum tare effect:	100 % of Max
Fractional factor (pi)	0.5
Excitation voltage	5 VDC
Circuit for remote sense	Active, (see below)
Minimum input impedance	87 ohm
Maximum input impedance	1600 ohm
Connecting cable to load cell(s):	See Section 3.1.1
Supply voltage:	9 - 12 VDC 230 VAC using external Vac/2Vdc adapter
Operating temperature range	$Min / Max = -10 \ ^{\circ}C / +40 \ ^{\circ}C$
Peripheral interface(s)	See Section 4

3.1.1 Connecting cable between the indicator and the junction box for load cell(s), if any

3.1.1.1 4-wire system

Line Maximum length 4 wires, shielded The certified length of the load cell cable, which shall be connected directly to the indicator.

3.1.1.2 6-wire system

Line Maximum length Maximum resistance per wire 6 wires, shielded 227 m/mm² 3.8 ohm

4. Interfaces

4.1 Load cell interface

Refer to section 3.1.1.

Any load cell(s) can be used for instruments under this certificate provided the following conditions are met:

- There is a respective test certificate (EN 45501) or an OIML Certificate of Conformity (R60) issued for the load cell by a Notified Body responsible for type examination under the Directive 2009/23/EC.
- The certificate contains the load cell types and the necessary load cell data required for the manufacturer's declaration of compatibility of modules (WELMEC 2, Issue 5, 2009, section 11), and any particular installation requirements. A load cell marked NH is allowed only if humidity testing to EN 45501 has been performed.
- The compatibility of load cells and indicator is established by the manufacturer by means of the compatibility of modules form, contained in the above WELMEC 2 document, or the like, at the time of EC verification or declaration of EC conformity of type.
- The load transmission must conform to one of the examples shown in the WELMEC 2.4 Guide for load cells.

4.2 Peripheral interfaces

The indicator may be equipped with one or more of the following protective interfaces that have not to be secured.

- RS-232C
- Analogue output (0 10 V / 4 20 mA)
- Digital output
- Blue Tooth

The peripheral interfaces are characterised "Protective interfaces" according to paragraph 8.4 in the Directive.

5. Conditions for use

Legal use of the indicator for automatic weighing or as counting device is not allowed with reference to this test certificate.

6. Location of seals and inscriptions

Seals shall bear the verification mark of a notified body or alternative mark of the manufacturer according to ANNEX II, section 2.3 of the Directive 2009/23/EC. The seals shall be placed so that the enclosure can not be opened.

Location of CE mark of conformity:

The CE mark of conformity is placed on the overlay on the rear side of the device.

Inscription on the overlay:

Type, accuracy class, Temp. -10 °C / +40 °C, Certificate No. DK0199-R76-11.04.

Other inscriptions on the overlay:

Manufacturer's name and/or logo, Part No, Supply voltage.

7. Tests

The indicator has been tested according to EN 45501 and WELMEC 2.1 Guide for testing of indicators.

Temperature tests: 20 / 40 / -10 / 5 / 20 (tested at minimum input-voltage sensitivity)	
Temperature effect on no-load indication (tested at minimum input-voltage sensitivity)	
Stability of equilibrium	
Repeatability	
Warm-up time	
Voltage variations	
Short time power reductions	
Electrical bursts	
Electrostatic discharges	
Immunity to radiated electromagnetic fields	
Damp heat, steady state	
Span stability	
Checklist	
Maximum load cell cable length and impedance of cable to load cell	
Load cell interface measurements with interruptions of the sense circuit	

Examination / tests

The test item fulfilled the maximum permissible errors at all tests.

8. Documentation

Contents of the technical documentation held by the notified body:

8.1 **Product specification**

- Manuals and descriptions
- Drawings
- Etc.

8.2 Examination report

OIML R76 report no. DANAK-1910568, DANAK-1910388 and NMi 709226.

8.3 Test results

Report no. DANAK-1910568, DANAK-1910388 and NMi 709226.

9. Pictures

Figure 1 Sealing of KFN-TM.

After remove the label, you will find VOID on housing, or a self destroyable sticker/seal shall be used.

Figure 2 Sealing of KFB-TM.

